Weak Set-Labeling Number of Certain Integer Additive Set-Labeled Graphs

نویسندگان

  • N. K. Sudev
  • K. A. Germina
  • K. P. Chithra
  • J. A. Gallian
چکیده

Let N0 be the set of all non-negative integers, let X N0 and P(X) be the the power set of X. An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(N0) such that the induced function f+ : E(G) ! P(N0) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sum set of f(u) and f(v). An IASL f is said to be an integer additive set-indexer (IASI) of a graph G if the induced edge function f+ is also injective. An integer additive set-labeling f is said to be a weak integer additive set-labeling (WIASL) if jf+(uv)j = max(jf(u)j; jf(v)j) 8 uv 2 E(G). The minimum cardinality of the ground setX required for a given graph G to admit an IASL is called the set-labeling number of the graph. In this paper, the notion of the weak set-labeling number of a graph G is introduced as the minimum cardinality of X so that G admits a WIASL with respect to the ground set X and the weak set-labeling numbers of certain graphs are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Sparing Number of the Edge-Corona of Graphs

Let N0 be the set of all non-negative integers and P(N0) be its the power set. An integer additive set-indexer (IASI) of a graph G is an injective function f : V (G) ! P(N0) such that the induced function f+ : E(G) ! P(N0) defined by f+(uv) = f(u) + f(v) is also injective, where f(u) + f(v) is the sum set of f(u) and f(v). An integer additive set-indexer f is said to be a weak integer additive ...

متن کامل

Some New Results on Weak Integer Additive Set-Labeling of Graphs

Let N0 denote the set of all non-negative integers and P(N0) be its power set. An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) → P(N0) such that the induced function f : E(G)→ P(N0) is defined by f(uv) = f(u)+f(v), where f(u)+f(v) is the sumset of f(u) and f(v). An IASL f is said to be an integer additive set-indexer (IASI) if the associated edge-function...

متن کامل

INTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS

For any h in N , a graph G = (V, E) is said to be h-magic if there exists a labeling l: E(G) to Z_{h}-{0} such that the induced vertex set labeling l^{+: V(G) to Z_{h}} defined by l^{+}(v)= Summation of l(uv)such that e=uvin in E(G) is a constant map. For a given graph G, the set of all for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper, the ...

متن کامل

Weak Integer Additive Set-Indexers of Certain Graph Products

An integer additive set-indexer is defined as an injective function f : V (G) → 2N0 such that the induced function gf : E(G) → 2N0 defined by gf (uv) = f(u) + f(v) is also injective, where f(u) + f(v) is the sumset of f(u) and f(v). If gf (uv) = k ∀ uv ∈ E(G), then f is said to be a k-uniform integer additive set-indexers. An integer additive set-indexer f is said to be a weak integer additive ...

متن کامل

Topological Integer Additive Set-Graceful Graphs

Let N0 denote the set of all non-negative integers and X be any subset of X. Also denote the power set of X by P(X). An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) ! P(X) such that the induced function f+ : E(G) ! P(X) is defined by f+(uv) = f(u) + f(v), where f(u) + f(v) is the sumset of f(u) and f(v). An IASL f is said to be a topological IASL (Top-IAS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015